GiD NASTRAN インターフェース チュートリアル

著作

Ramon Ribó Miguel de Riera Pasenau Enrique Escolano Jorge Suit Pérez Ronda Lluís Font González Edgar Güeto de la Rosa

翻訳・編纂

デジタルソリューション株式会社

カバーデザイン

Lluis Font González

問合せ先(国内)

デジタルソリューション株式会社 731-0122 広島市安佐南区中筋3丁目7-18 キョーエイ中筋ビル TEL:082-831-1190 Fax:082-831-1193

http://www.cadcamcae.net okyakusama@cadcamcae.net

問合せ先(海外)

International Center for Numerical Methods in Engineering Edificio C1, Campus Norte UPC Gran Capitán s/n, 08034 Barcelona, Spain

http://gid.cimne.com gid@cimne.upc.es

Depósito legal: ISBN Reference Manual ISBN Obra Completa © CIMNE (Barcelona, Spain)

目次

1.	はり	の静解析		 · · · · · · · · · · · · · · · · · · ·	1
	1.1	目的		 	1
	1.2	モデル説明		 	1
	1.3	モデル作成方法	Pre	 	2
	(1)	スタート		 	2
	(2)	形状作成		 	2
	(3)	材料物性值定義		 	3
	(4)	荷重・境界条件	定義	 	5
	(5)	局所座標の定義		 	5
	(6)	接続条件		 	5
	(7)	静荷重設定		 	5
	(8)	メッシュ作成		 	3
	(9)	解析条件定義		 •	7
	(1)))NASTRAN データ	の作成	 	7
	1 4	Post	•••	 	2
	(1)	PUNCH ファイルの	····································	 ۶	2 X
	(1)	FEMAP ASCIL 7 -	マイルの詰み込み	 	2
	(2)			 	2
	(3)	加木収小 - 涂いつぶしつい	<i>b</i>	 	2
	י ר	- 塗り シホリコン		 	ך ר
	2	- 夕形凶 ニインダイヤグ	= /.	 	ש ר
	5	- 24 294 62	JΔ	 	9
n	ギヤ	ーの塾留析		11	n
2	2 1	日的		 	ן ר
	2.1	日町 岡坂久州		 	J 1
	2.2	時か が た た さ た さ		 ۱۱	1
	2.3	『FNU力法 Nマカート		 ا۱	1
	(1))スタート		 T	
	(2)Preferences 、プロパー、中華		 12	2
	(3)ノロハテイ定義	· · · · · · · · · · · · · · · · · · ·	 12	2
	(4)何重・境界条件	正義	 	4
	(5)解析条件設定		 	5
	2.4	Post処埋		 	5
	(1)PUNCHファイルの	D読み込み	 	5
	(2)FEMAP ASCIIフラ	ァイルの読み込み	 	5
	(3)Post処理		 10	3

		1-塗りつぶしコ	ンタ			 	 	 . 16
		2-ベクトル表示				 	 	 . 17
3.	周波	数応答解析				 	 	 . 18
	3.1	目的				 	 	 . 18
	3.2	モデル説明				 	 	 . 18
	3.3	作成方法				 	 	 . 19
	(1))スタート				 	 	 . 19
	(2))形状作成				 	 	 . 19
	(3)材料物性值定義				 	 	 . 20
	(4)境界条件の定義				 	 	 . 22
	(5)動荷重の定義				 	 	 . 22
	(6))メッシュ作成				 	 	 . 23
	(7)解析条件の定義				 	 	 . 24
	3.4	Post処理				 	 	 . 25
	(1)PUNCHファイルの	D読み込み	۰		 	 	 . 25
	(2	FEMAP ASCIIフェ	ァイルの読	み込み	L	 	 	 . 25
	(3)結果表示				 	 	 . 26
	•	1-塗りつぶしコ	ンタ			 	 	 . 26
		2-変形図				 	 	 . 26
		3-数值結果				 	 	 . 26
		4-アニメーショ	ンの作成			 	 	 . 27
						 	 	 • =•
4.	はり	の固有値解析				 	 	 . 28
	4.1	目的				 	 	 . 28
	4.2	モデル説明				 	 	 . 28
	4.3	作成方法				 	 	 . 29
	(1)スタート				 	 	 . 29
	(2)形状作成				 	 	 . 29
	(3)材料物性值定義				 	 	 . 29
	(4)ローカル座標定	義 .			 	 	 . 31
	(5)メッシュ作成				 	 	 . 31
	(6))境界条件定義				 	 	 . 31
	(7))解析実行				 	 	 . 32
	(*)	1-Executive Co	ntrol Sea	ction定	· ·美	 	 	 . 32
		2-Case Control	Section	定義		 	 	 . 33
		ド定義	22011011	- 32		 	 	 . 33
		4-PARAMセット				 	 	 33
						 	 	 . 55

4.4 Post処理	
(1)PUNCHファイルの読み込み	
(2)FEMAP ASCIIファイルの読み込み	
(3)結果表示	
1-塗りつぶしコンタ	
2-変形図	
3-数値結果	
4-アニメーションの作成	

1. はりの静解析

ここでは、I型断面はりの解析モデルを作成し、静解析を実施します。

1.1 目的:

I型断面はりの形状を作成します。 解析モデルを作成します。 静解析を実施します。

1.2 モデル説明:

ピン支持されたI型断面はりの変位および反力を求めます。

長さ	100 i nch
高さ (断面)	2 inch
幅 (断面)	1 inch
板厚 (断面)	0.1 inch
断面二次モーメントI ₁	0.229 inch
断面二次モーメントI ₂	0.017inch

1.3 モデル作成方法: Pre

(1)スタート:

1- FILE->new project->open を選択し,タスクバーのアイコンクリックします。 2- メニュの problem type から Nastran を選択します。(次のコマンドを実行) Data -> Problem type -> Nastran -> nastran

NASTRAN イメージファイルが表示され、NASTRAN インターフェースが起動します。 3- ビューを次のコマンドで XY 平面にします。

View -> Rotate -> Plane XY (original)

(2)形状作成:

1- ラインを作成します。

Geometry -> Create -> Line コマンドラインに点の座標を入力します。 First point -> 0,0 Second point -> 30,0 Third point -> 60,0 Fourth point -> 120,0 (2つの座標を入力しているため、Z座標は0とされます。) マウス中ボタンが escape に設定されていますので、中ボタンを押して完了です。

(3)材料物性值定義:

 新しい材料を定義します。 メニュより Data -> Material
 右のアイコンを選択し、新しい材料を作成します。
 材料名 alumを入力します。
 右図のように各物性値を入力します。

このアイコンを選択し材料データをセーブします。

2- ラインのプロパティを定義します。 Data -> Properties -> Property

もし材料設定ウィンドを閉じていなければ、 🕗

このアイコンからプロパティを選択します。

閉じているようでしたら、メニュより、 Data -> propertyを選び、beamを選択します。

	Material 🛛					
tİ	alum 👱 🧭 🖒 🖉 🕗					
	For default values wirte "DEFAULT" to the desired statement					
	Young (Ex): 10.0e6					
	Shear Modul: DEFAULT					
	Poisson (NUXY): 0.3					
	Mass Density: 0.101					
	Expansion-Coeff,a: 0.0					
	Temp Ref: 0.0					
	Limit Stress Tension: 0.0					
	Limit Stress Compression: 0.0					
	Limit Stress Shear: 0.0					
	Assign Draw Unassign Import/Export					
	Glose					

(4)荷重・境界条件定義

以下のメニュで条件設定を行います。 Data-> Boundary Conditions -> Constraints

このアイコンを選び以下の拘束条件を与えます。

	•		
A	Ε	C	D

境界条件

	X-Displ	Y-Displ	Z-Displ	X-Rot	Y-Rot	Z-Rot
PointA	1	1	1	1	1	0
PointC	0	1	1	1	1	0
PointD	0	1	1	1	1	0

(5)局所座標の定義

以下のコマンドから局所座標を定義します。

Data -> Properties -> Local Axes 局所座標系を自動的にセットします。 すべてのラインを選択します。

(6) 接続条件

B点の自由度を切り離します。 Data -> Boundary Conditions -> Connections

Z軸回転自由度にフラグを立てます。 Assign ボタンをクリックしB点を選びます。 この設定ではり連続点の自由度を切り離すことが可能です。

(7)静荷重設定

静荷重を与えます。 *Data -> Loads -> Static Loads*

次のアイコンをピックし、各点の荷重をセットします。

Num. of linear elements = 20 Num. of nodes = 21

(9)解析条件定義

1- Executive Control Section を定義します。 Data -> Problem Data -> Executive Control

NASTRAN で使用する ID, ANALYSIS TYPE、time を入力します。 Analysis type を *STATICS* にし、他はそのままデフォルトにします。 *Accept* ボタンをピックします。

2- Case Control Sectionを定義します。 *Data -> Problem Data -> Case Control*

2-1. - Input data 画面はデフォルトのままとします。

2-2. - *Output data*画面では、 TitleにBeam_example"と入力し、subtitle,label,post processはデフォルトの ままとします。 必要な出力をチェックしますが、本例題ではデフォルトのままとします。

Note: もし MI/NASTRAN の post process を行うのであれば、output device を PUNCH に設定します。

Accept ボタンを押します。

(10)NASTRAN データの作成

以下のメニュを実行します。 *File -> Import/Export -> Write Calculation File* ウィンドが表示されますので、セーブ先フォルダーを指定します。拡張子は自動で付きませんので 忘れないように注意してください。

1.4 Post **処理**:

右のアイコンから post に移動します。 🕥

(1)PUNCH ファイルの読み込み:

NASTRAN の PUNCH ファイル (拡張子 pch)を以下のように読み込みます。 *File -> Import -> Import PUNCH* ウィンドが表示され、NASTRAN PUNCH ファイルを指定します。 読み込みが終了すれば、ウィンドを閉じます。

(2)FEMAP ASCII ファイルの読み込み:

FEMAP の ASCII ファイル(拡張子 neu)を以下のように読み込みます。 File -> Import -> FEMAP file ウィンドが表示され、neuファイルを指定します。 読み込みが終了すれば、ウィンドを閉じます。

Note:NE/NASTRAN で FEMAP ASCII ファイルを出力するには、NASTRAN editor で Setup -> Default Analysis Options RSLTFILETYPEで FEMAP ASCIIを選択します。

(3)結果表示

1-塗りつぶしコンタ View results -> Contour Fill Displacementsを選択します。

Contour Fill |Displacements|

2- 変形図

View results -> Deformation Displacements を選択します。

Deformation Displacements

3-ラインダイアグラム

View results -> Line Diagram Scalar および Y-Displacements を選択します。 以下のコマンドでラインダイアグラム設定画面に変わります。 *Options -> Line Diagrams -> Show elevations* Filled line を選択します。

Scalar Line Diagram of Y-Displacements

2.ギヤーの静解析

ここでは、まずギヤーと8角形の軸形状を作成し、ギヤーの解析モデルを作成します。 さらに静解析を実施します。

2.1 目的: ギヤーと8角形の軸形状の作成。 ギヤーの解析モデルを作成。 静解析を実施。

2.2 解析条件:

ギヤーの歯面に圧力を負荷し、軸の両端を固定した時の静解析を行います。

2.3 作成方法:

- (1)スタート:
- 1- GiD のファイル pieza.gid を読み込みます。このファイルは GiD インストール先の Example ディレクトリに あります。

または、以下の要領でインターネット経由でデータを入手することも可能です。 Data ->Problem Type -> Internet Retrieve

詳しくはGiDのマニュアルをご覧ください。

<u>コメント:</u>

手作業でギヤーを作りたい方は GiD チュートリアルをご覧ください。同じギヤーの作り方が書かれています。

(2)Preferences:

メッシュ作成のため Preferences でメッシュ作成方法を定義します。

- 1- Preferences をメニュから選びます。:
- *Utilities -> Preferences* 2- meshing タブを選択し次の手順で定義します。

Surface mesher: *Rsurf Mesh until end Automatic correct sizes* Unstructured size transition: *0.6* Smoothing: *High Angle No mesh frozen layers Allow automatic structured*

これらの設定で、テトラ要素が作成できます。 ギヤの CAD データはメッシュ作成がスムーズに行えるようにボリューム分割がされています。

(3) プロパティ定義:

1- サーフェースにプロパティを定義します。 Data -> Properties -> Property

表示ボックスの矢印をピックし、要素タイプ Tetrahedron を選択します。

左のボタンを選び新しいプロパティを作成します。: プロパティ名 *gear* を入力します。 以下のようにデータを入力します。

M Property			×
gear		- 🧭 🖒 🗙	7
PROPERTY	TETRAHEDRON		
Coord System:	ELEMENT 🔤		
Composition Material	Isotropic		
	<u>C</u> reate Material		
Assign Draw Un	assign Import/Export		
	<u>C</u> lose		

uhapic - 🧭	OX 4
Interpie Material	
Saffreet Themal Others	
Sallness	1
E 2065	Temp
G 7.69e+004	Temp
Poisson 0.3	Temp
6 → n	
G ← n	
Link Stress	
Tension	Temp
NonLinear.	
and the second sec	

create materialを選択し、材料データを新規に作成します。

ヤング率 E、ポアソン比を入力し G<-n をピックすると自動的に G の値が計算されます。

このボタンでセーブします。

一度セーブした材料データは次から同じものが使用できます。

次に *Assign* ボタンで volume を指定します。 *Draw* ボタンで与えたプロパティを表示できます。

(4)荷重・境界条件の定義:

1- 境界条件を設定します。

Data-> Boundary Conditions -> Constraints

左のサーフェースボタンを選び assign で軸両端のサーフェースを選択します。

軸両端の6自由度を固定します。

2- 荷重条件を設定します。 歯面に圧力を与えます。 Data -> Loads -> Static Loads

全のボタンで圧力荷重にし、ボックスから Normal-Surface-Load を選びます。 荷重値 1.0 を入力します。(正値は面に対して内側に圧力が作用します)

次に下図の様に3面を選択します。

(5)解析条件設定:

Executive Control セクションを設定します。 *Data -> Problem Data -> Executive Control* 1- <u>必要なデータを設定します。</u>

STATICS を選んで、その他はデフォルトのままとし accept をピックします。

2- Case Control セクションを設定します。 Data -> Problem Data -> Case Control

2-1. - 入力データ

この例題では、加速度や重力を考慮する必要はありませんので、すべてデフォルトにします。

2-2. - 出力データ タイトルを"*Gear_example*"と入力します。

必要な項目を選んでいきます。 -*Smal I*: 8 カラム(スモールフィールド)での BULK データ出力 -*Large*: 16 カラム(ラージフィールド)での BULK データ出力

アウトプット項目として *Displacements, constraints forces, elements forces and elements stresses*, にチェックしその他はチェックなしとします。 *Output Design section* はそのままとします。

注): MI/NASTRAN の POST 処理を行う場合は PUNCH としなければなりません。

Accept をクリックします。

Meshingでメッシュ作成後、NASTRANデータフォーマットで書き出します。 NASTRANフォーマットで書き出すには2つの方法があります。

方法 1:

Calculate -> Calculate

方法 2:

File -> Import/Export -> Write Calculation File データセーブ用のウィンドが表示されますので、セーブ先とファイル名を指定します。このとき拡 張子を忘れないようにしてください。

2.4 Post **処理**:

POST 処理は次のように行います。

(1)PUNCH ファイルの読み込み:

拡張子PCHの読み込み File -> Import -> Import PUNCH

(2) FEMAP ASCII ファイルの読み込み: 拡張子neuの読み込み

File -> Import -> FEMAP file

注:NEiNASTRAN では出力オプションで RSLTFILETYPE を FEMAP ASCII に設定する必要があります。

(3)Post **処理**:

1-塗りつぶしコンタ を次のように出力します。 メニュ : View Results->Contour Fill

View results window上で: Viewを*Contour Fill*にセット。 Resultsを*total translation*にセット。

Contour Fill |Total Translation|

2-ベクトル表示

View results ->Display Vectors を選択。 total spc forces->total spc forces を選択。

Display Vectors of TOTAL SPC FORCE, [TOTAL SPC FORCE] factor 2.01001e-6.

Display Vectors |total spc forces|

コンタ、ベクトル以外の結果表示も種々GiD では可能です。

3. 周波数応答解析

ここでは最初に、長方形板の形状および解析モデルを作成します。その後、周波数依存荷 重を負荷し、周波数応答解析を実行します。最後にpost-processingで結果処理を行います。

3.1 目的:

以下の作業を行います。

長方形板形状の作成 有限要素法モデルの作成 周波数依存荷重を用いて、NASTRAN データの出力および実行 結果表示

3.2 モデル説明:

5×2インチの平板のコーナーに単位荷重を負荷し、周波数応答を求めます。 20Hz 刻みで 100Hz までの解析を行い、構造減衰は 0.06 とします。

モデル形状および材料物性値: 長さ 5 inch 幅 2 inch 板厚 0.1 inch 密度 0.282 lbs/inch³ ヤング率 30.0e+6 lbs/inch³ ポアソン比 0.3

3.3 作成方法:

(1)スタート:

2- problem typeを以下のコマンドで Nastran に設定します。

Data -> Problem type -> Nastran -> nastran

インターフェースロゴが表示されます。

- 3- ビュー平面を XY に変更します。
- View -> Rotate -> Plane XY (original)

(2)形状作成:

- 1- 長方形板の外形ラインを作成します。 Geometry -> Create -> Line
- ここでコマンドラインから各頂点の座標を入力します。
- 1点目 -> 0,0
- 2 点目 -> 5,0
- 3 点目 -> 5,2
- 4 点目 -> 0,2
- 5 点目 -> 0,0(1 点目と同じ座標を入力します。)

(x、 y座標のみを入力するとz座標は0と判断されます)

画面上で5点目を1点目と結合するか聞いてきますので、*Join*を選択します。最後にEscキーかマウスの中間ボタンを押して終了です。(結合を聞いてこない場合は、マージされていませんので、utilities->collaps->modelでマージを行います。)

2- サーフェースを作成します。

Geometry -> Create -> NURBS Surface -> By contour またはツールバーの右のアイコンを選択すれば早く処理ができます。

マウスポインターが回このように変わります。この状態で画面上のラインが選択可能となりますので、4本のラインを選択してください。

Esc キーかマウス中央ボタンを押して、作業を終了します。

画面は次のように表示されます。

2 NA	STRAN	Interface		Project: NASTRAN Interface	_O×
Tites 200	View Conv	Geometry	Utition (C	Data Meeting Calculate Help	
NR.	0	$\circ \circ $	M Q	1	
~					
20					
12					
-					
2			T		
2					
2			t,	8	
田					
6					
0	Ι.				
		×			
-	'	<u> </u>		x=0,00 u=0,02 z=0,00	
Enter	lines to	define Nurl	iSurface (B	ESC to leave)	-
Leavi	ng Nurb	Guiface pre	ation, No c	thanges	

(3)材料物性値定義:

1- 新しい材料を定義します。 Data -> Materials

ー このアイコンをクリックし、新しい材料名を *mat_1* と入力します。 -下図のように必要に応じて各物性値を入力します。

Isotropic Material	
Stillness Thermal Others	
Stillness	
E 30.0e6	Ten
G	Ten
Poisson 0.3	Ten
G → η G ← η	_
Limit Stress	
Tension	Ten
	NonLinear
Import/Export	

◎ 200アイコンをピックし、入力データをセーブします。

2- サーフェースに材料物性値を定義します。 Data -> Properties -> Property

もし材料入力ウィンドを開いたままでしたら、 📶 このアイコンから"property"を選択する ことで、プロパティ入力ウィンドを開くことができます。

要素の種類を *plate* とし、 **○**このアイコンで新たにプロパティを追加します。 名前を *t1* とします。

🗰 Property	×
n	- & O 🗙 🕘
Property Values Thickness 0.1 Nonstructural Mass/ area Composition Material Isotropic Stress Computation Top Fiber Bottom Fiber	Advanced Options Bending Stiffness Transverse Shear Bending Mat, mat1 Transverse Shear Mat, mat1 Mem-Bend Coupling mat1 Create Material
Assign Draw Unassign Import/Export	
Clos	8

必要なデータを下図のように入力します。

bending、shear、mem-bend に先ほど定義した材料(mat1)を指定します。

右のアイコンでデータをセーブします。 🥙

ここで、*Assign*をピックし surfaceを選び、画面上のサーフェースを選択します。 確認のために、*Draw*ボタンを選ぶと、プロパティが表示されます。 画面は以下のように表示されます。

(4)境界条件の定義:

境界条件を定義します。

Data-> Boundary Conditions -> Constraints

このボタンをピックし、ラインに境界条件を与えます。 **Z-Rotation**のチェックをはずし、その他はチェックを入れたま まとします。 Assignをピックし、左側の縦ライン(4番のライン)を選択しま す。 Note: ライン番号の表示は次のように行います。 -マウスの右ボタンから contextual メニュを表示し ます。 -Label -> All ですべての形状データの番号が表示さ れます。 (5)動荷重の定義:

表形式で動荷重を定義します。

Data -> Loads -> Tables

──このアイコンから新しい表を定義します。 名前を freq_var とします。 データを次のように入力します。

- Single Valueを選択
- X= 0.0 Y= 1.0
- Add ボタンをクリック
- X=1000 Y= 1.0
- Add ボタンをクリック
- 右のボタンでセーブ:
- Close ボタンで終了

次に、動荷重を定義します。

Data -> Loads -> Dynamics Loads

۹ このアイコンにセットし、荷重タイプを Freq Dynamic Type1 とします。

必要なデータを次の図のように入力します。

D[f]は table のままになっていますが、table はデフォルトでは何も定義されていない状態とな ります。

🙀 Gonstraints	\mathbf{X}
•\3	
Line-Constraints	9
I × Displacement	
V-Displacement	
I Z-Displacement	
✓ XRotation	
✓ Y-Rotation	
C Z-Rotation	
Assign Entities Draw Unassign	
Glose	

🗰 Dynamics Loads	×
S I III Freq Dynamic Type1	- 2
Data Description	
Degree of freedom: 32 Scale Factor(A) 1.0 Time Delay(T) 0.0 Phase Lead(D) 0.0 Table Interpolation Values C(I) Ireq var Table Interpolation Values D(I) Table	Description: Defines a frequency of dynamic load of the f (Fr(f)) = {A_C(f) + a for use in frequency r
Finish Press 'Finish' to end selection	>
Close	

Assign ボタンを押し、右下のポイント(番号2)を選択し、close で終了します。

(6)メッシュ作成:

1-structured メッシュを作成します。 *Meshing -> Structured -> Surfaces* 画面上のサーフェースを選択し、中央マウスボタンを押します。 ラインの分割数を聞いてきますので、10 と入力し、0K を押します。 次に、ライン番号1と3を選択し、中央マウスボタンを押します。 再び分割数を聞いてきますので、今度は4とし、同様にライン番号2と4を選択します。

2- メッシュ作成

Meshing -> Generate

メッシュサイズを聞いてきますが、すでに分割数を指定していますので、そのままで OK を押します。

メッシュ作成情報が画面表示されます。

Dialo	g window	×
i	Mesh Generated. Press 'OK' to s	ee it
Num. Num.	of Quadrilateral elements=40 of nodes=55	•
	OK	

OK を押してください。

Note: 節点要素番号を表示することもできます。

-マウス右ボタンから contextual メニューを表示します。 -Label -> All で節点・要素番号が表示されます。

4		10		77		25		211		-11		12		10		-		58		- 10
	i.		ŝ.		÷.		12		U.		21		24		29		12		345	
i.		12		14		78		#3		29		14		29		-		N		5
	1		W.		18		16		18		23		36		38		34		11	
_		1		9		15		21		27		32		28		43		NO		- 51
	×		×		.11		15				11		11		316		35		39	
		+				13		18		26		15		26.		41		47		5
	•		*		12		16		28		26		28		301		(28);		30	
								17		24				25		-		80		

K

GiD

(7)解析条件の定義:

1- Exective Control Section を定義します。

Data -> Problem Data -> Executive Control NASTRAN の種類を選択し、*STATICS* を *DIRECT FREQUENCY RESPONSE* に変更します。 その他はデフォルトのままとし、Accept ボタンをクリックします。

2- Case Control Section を定義します。 *Data -> Problem Data -> Case Control* 2-1.- Input data すべて、デフォルトのままとします。

2-2.- Output data タイトルを"*Direct_frequency _Response*"とし、その他はデフォルトのままとします。 *Displacements* と *Velocity*にチェックを入れて、その他はチェックをはずします。 Output Design section はそのままとします。

Note: もし MI/NASTRAN のポスト処理を行うのであれば、output device で PUNCH を指定しなければなりません。 Acceptボタンで終了します。

3- 動解析の定義

Data -> Problem Data -> Dynamics 以下のようにセットします。 Solution Method = **Direct**

Domain of Solution = *Frequency* Overall Structural Damping Coeff. = *0.06* Frequency Step Initial step = *20* Frequency Increment = *20* Number of frequency increments = *49* Mass formulation = *Coupled*

Accept ボタンで終了します。

4- パラメータセット

Data -> Problem Data -> PARAM MI/NASTRAN の場合、WTMASS を 0.00259 にセットします。 その他はデフォルトのままにします。 Accept ボタンで終了します。

インプットデータのエクスポート: *File -> Import/Export -> Write Calculation File* ウィンドが表示されますので、セーブするファイル名およびディレクトリー名を指定します。 拡張子に注意してください。

3.4 Post **処理**:

♪】このアイコンでポスト処理に移行します。

(1)PUNCH ファイルの読み込み:

- PUNCH ファイル(拡張子 pch)のインポートは以下のコマンドで行います。(MSC および MI)

File -> Import -> Import PUNCH ウィンドが表示されますので、PUNCH ファイルのフォルダーを指定します。

(2)FEMAP ASCII neutral ファイルの読み込み:

- FEMAP ASCII ファイル (拡張子 neu) のインポートは以下のコマンドで行います。 (NE/NASTRAN)

File -> Import -> FEMAP file ウィンドが表示されますので、neu ファイルのフォルダーを指定します。

Note: FEMAP ASCII ファイルを NE/NASTRAN から出力するには、NASTRAN editor から: *Output Control Directives のRSLTFILETYPE* を *FEMAP ASCII* にセットします。

(3)結果表示:

1- 塗りつぶしコンタ

View results -> Contour Fill 表示したい結果を選択します。

Contour Fill Z-Displacement Step 20Hz

解析ステップの変更する場合は以下のコマンドと実施します。 View results -> Default Analysis/Step -> 1

2- 変形図

View results -> Deformation

トラックボールを使用して、見易い方向にモデルを回転してください。

3-数值結果:

数値結果を表示したい場合は このアイコンをクリックし、表示したい節点を画面に表示します。

例: 節点 51 step 200Hz Displacements X= 1.28075e-19 Y= -4.89892e-20 Z= -0.00547175 |Dis.|=0.0547175

Velocity X= -1.23013e-19 Y= -5.22769e-19 Z= 0.467011 |Vel.|= 0.467011

4.アニメーションの作成:
 1- 表示したい結果をまず画面に表示します。
 2- アニメーションウィンドを開きます。
 Windows -> Animate 3- Play ボタンを押します。

4.はりの固有値解析

ここでは、I型断面はりの形状および解析モデルを作成し、固有値解析を実行します。

4.1 目的:

I型断面はりの形状作成 解析モデルの作成 固有値解析の実行

4.2 モデル説明:

今回のモデルは以下の寸法および断面特性です。

長さ	100inch
断面高さ	2 inch
断面幅	1 inch
板厚	0.1 inch
断面 2 次モーメントI ₁	0.229 inch
断面 2 次モーメントI ₂	0.017inch

4.3 作成方法:

(1)スタート:

1- FILE->new project->openを選択し,タスクバーのアイコンクリックします。 2- メニュの problem type から Nastran を選択します。(次のコマンドを実行) Data -> Problem type -> Nastran -> nastran

NASTRAN イメージファイルが表示され、NASTRAN インターフェースが起動します。 3- ビューを次のコマンドで XY 平面にします。

Mark

View -> Rotate -> Plane XY (original)

(2)形状作成:

1- ラインを作成します。

Geometry -> Create -> Line コマンドラインに点の座標を入力します。 First point -> 0,0 Second point -> 100,0 (2つの座標を入力しているため、Z座標は0とされます。) マウス中ボタンが escape に設定されていますので、中ボタンを押して完了です。

(3)材料物性値定義:1-新しい材料を定義します。 メニュより Data -> Materials右のアイコンを選択し、新しい材料を作成します。材料名 alumを入力します。右図のように各物性値を入力します。	alum For default values wirte "DEFAULT" to the desired statement Young (Ex): 10.0e6 Shear Modul: DEFAULT Poisson (NLRY): 0.3 Mass Dennity: 0.101 Expansion-CoefF,a: 0.0 Temp Ref: 0.0 Limit Stress Tension: 0.0 Limit Stress Shear: 0.0
このアイコンを選択し材料データをセーブします。	Assign Draw Unassign Import/Export
	antilever E OF AD
2- ラインのプロパティを定義します。 <i>Data -> Properties -> Property</i>	Area: 0.38 Moments of Inertia: 1 11: 0.229 12: 0.017 12: 0.0
もし材料設定ウィンドを閉じていなければ、 쮣	Torsional Constant: [0.0 Y Shear Area: [0.0 Z Shear Area: [0.0
このアイコンからプロパティを選択します。	Nonstructural mass/lentght 0.0 Stress Recovery 2_to_4_Blank=Square Values: Y Z ±
閉じているようでしたら、メニュより、 メニュより <i>Data -> property</i> を選び、 <i>beam</i> を選択しま す。 右のアイコンを選択し新しいプロパティ <u></u> を	Composition Material alum

作成します。 名前を図のように *cant i lever* と入力し、他のプロパティ情報を入力します。

Composition Material の欄には先ほど作成した材料を指定します。 右のアイコンを選びプロパティをセー ブします。 Assign ボタンをピックしすべてのライ プロパティ確認のため、*Draw*ボタンを選択し、与えたプロパティ を選ぶと以下のように表示されます。

(4) ローカル座標定義

Data -> Properties -> Local Axes ローカル座標を自動的に定義します。(選んだラインのローカル座標を自動決定します。) ラインを選択してください。

(5)メッシュ作成:

- 1- メッシュを作成します。
 - Meshing -> Generate

メッシュサイズを聞いてきますので、デフォルトのまま10とします。 OK を押すとメッシュ情報が表示されます。

Dialog	window	×
i	Mesh Generated.	Press 'OK' to see it
Num. o Num. o	f linear elements=10 f nodes=11	
	ОК	Cancel

要素数 = 10 節点数 = 11 OK ボタンを押します。

(6)境界条件定義:

1- 次のコマンドから境界条件を定義します。 Data-> Boundary Conditions -> Constraints

このアイコンを選択し、節点に条件を与えます。

次の手順で節点番号を表示します。

-マウス右ボタンから contextual メニューを表示します。 -Label -> All で節点・要素番号が表示されます。

<u>1 2 3 4 5 6 7 8 9 10 11</u>

次のように条件を設定します。 <u>節点 1</u> 以下の項目にチェックを入れます。 X-Displacement Y-Displacement Z-Displacement X-Rotation Y-Rotation Uncheck Z-Rotation. <u>節点 11</u>

<u>.</u> 以下の項目にチェックを入れます。 Y-Displacement Z-Displacement X-Rotation Y-Rotation X-Displacement および Z-Rotation はチェックをはずします。

<u>残りの節点(</u>節点 1 と節点 11 を除く点) 次の項目にチェックを入れます。 Z-Displacement X-Rotation Y-Rotation 次の 3 つのチェックははずします。 X-Displacement Y-Displacement Z-Rotation.

条件確認のため、Drawボタンを押し、 "Colors "オプションをセットします。

<mark>1 2 3 4 5 6 7 8 2 39 1</mark>1 □ 0 0 1 1 1 0 □ 0 1 1 1 0

(7)解析実行

1- Executive Control Section 定義

Data -> Problem Data -> Executive Control 使用する NASTRAN のタイプを選び、*MODES*に設定します。 その他はそのままデフォルトとします。 Accept ボタンを押します。

2- Case Control Section 定義 Data -> Problem Data -> Case Control 2-1.- Input data すべてデフォルトとします。

2-2.- Output data

タイトルを "Modes_Analysis"とします。 アウトプットは Displacement のみにチェックをし、その他はデフォルトのままとし ます。

Note: MI/NASTRAN をお使いの方は output device を *PUNCH* に設定しなければなりません。 *Accept*を押します。

3- モード定義 Data -> Problem Data -> Dynamics

In modes analysis tab: 次の項目のセットを行います。 -Method of eigenvalues extraction = GIV. -First Frequency = 0.0 -Last Frequency = 350.0 -Desired number = 3 -Mass orthogonality test にチェックを入れます。 -その他はデフォルトのままとします。

In Dynamic Design tab: Set Mass formulation = **Coupled**

Accept ボタンで終了します。

4- PARAM セット

Data -> Problem Data -> PARAM MI/NASTRAN をお使いの場合は、WTMASS を 0.00259 にします。 その他のデータはデフォルトのままとし、Accept ボタンを押します。

NASTRANデータのエクスポート: *File -> Import/Export -> Write Calculation File* ウィンドが表示され、セープするデータのフォルダおよびファイル名を指定します。

4.4 ポスト処理:

(1)PUNCH ファイルの読み込み:

- PUNCH ファイル(拡張子 pch)のインポートは以下のコマンドで行います。(MSC および MI)

File -> Import -> Import PUNCH ウィンドが表示されますので、PUNCH ファイルのフォルダーを指定します。

(2)FEMAP ASCII neutral ファイルの読み込み:

- FEMAP ASCII ファイル (拡張子 neu) のインポートは以下のコマンドで行います。 (NE/NASTRAN)

File -> Import -> FEMAP file ウィンドが表示されますので、neu ファイルのフォルダーを指定します。

Note: FEMAP ASCII ファイルを NE/NASTRAN から出力するには、NASTRAN editor から: *Output Control Directives のRSLTFILETYPE* を *FEMAP ASCII* にセットします。

(3)結果表示:

1- 塗りつぶしコンタ

View results -> Contour Fill 表示したい結果を選択します。下の図は displacement を選択した例です。

Contour Fill Y-Displacement mode 22665.1

解析ステップの変更する場合は以下のコマンドと実施します。 *View results -> Default Analysis/Step -> 1*

2- 変形図

*View results -> Deformation Displacement*を選択します。

3- 数値結果:

数値結果を表示したい場合は このアイコンをクリックし、表示したい節点を画面に表示します。

4-アニメーションの作成:

- 1- 表示したい結果をまず画面に表示します。
- 2- アニメーションウィンドを開きます。
- Windows -> Animate
- 3- Play ボタンを押します。
- リストファイルから解析結果を見ると以下のようになります。

Modes no.	EIGENVALUE	CYCLIC FREQUENCY
1	2.266509E+04	2.396066E+01
2	3.627142E+05	9.585227E+01
3	1.837810E+06	2.157598E+02

